分类标签归档:混合高斯模型

混合高斯模型Gaussian Mixture Model(GMM)


混合高斯模型(Gaussian Mixture Model,简称GMM)是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。通俗点讲,无论观测数据集如何分布以及呈现何种规律,都可以通过多个单一高斯模型的混合进行拟合。

如下图是一个观测数据集,数据集明显分为两个聚集核心,我们通过两个单一的高斯模型混合成一个复杂模型来拟合数据。这就是一个混合高斯模型。

QQ截图201505081402351111

既然混合高斯模型是由n个(或多个)单高斯模型组成,那么首先了解下单高斯模型(Single Mixture Model,简称SMM)。

最常见的单高斯模型(或者叫单高斯分布)就是

继续阅读