机器学习/数据挖掘/深度学习数据集—自然语言数据集

MS MARCO

MS MARCO是一种新的大规模阅读理解和问答数据集。 在MS MARCO中,所有问题都是从真正的匿名用户查询中抽取的。使用先进的Bing搜索引擎版本,从实际的Web文档中提取数据集中的答案的上下文段落。

推荐度:★★★,推荐应用方向:自然语言理解、智能问答

介绍和下载地址:http://www.msmarco.org/

Question Pairs

第一个来源于 Quora 的包含重复/语义相似性标签的数据集。数据集由超过40万行的潜在问题的问答组成。每行数据包含问题ID、问题全文以及指示该行是否真正包含重复对的二进制值。

推荐度:★★★,推荐应用方向:自然语言理解、智能问答

介绍和下载地址:https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

SQuAD

斯坦福问答回答数据集(SQuAD)是一个新的阅读理解数据集,从维基百科中提炼出的问题组成,每个问题的答案都是相应段落的一段文本。在500多篇文章中有超过10万个问答对。

推荐度:★★★,推荐应用方向:文本挖掘、自然语言理解、智能问答

介绍和下载地址:https://rajpurkar.github.io/SQuAD-explorer/

Maluuba NewsQA

Maluuba的NewsQA数据集的目的是帮助研究团队建立能够回答需要人为理解和推理技能的问题的算法。它包含了从DeepMind问答数据集中的CNN文章中抽取了120K个常见问题。

推荐度:★★,推荐应用方向:文本挖掘、自然语言理解、智能问答

介绍地址:https://datasets.maluuba.com/NewsQA

下载地址:https://github.com/Maluuba/newsqa

1 Billion Word Language Model Benchmark

这是一个大型、通用的语言建模数据集,该项目的目的是提供语言建模实验的标准培训和测试,常用于如 word2vec 或 Glove 的分布式词语表征。

推荐度:★★,推荐应用方向:文本挖掘、自然语言理解

介绍和下载地址:http://www.statmt.org/lm-benchmark/

Maluuba Datasets

这是一个用于自然语言理解研究的复杂的人工数据集,主要包括NewsQA和Frames。它主要用于机器阅读理解、面向对象的对话系统、对话界面和加强学习。

推荐度:★★,推荐应用方向:自然语言理解、智能问答

介绍和下载地址:https://datasets.maluuba.com/

Common Crawl

Common Crawl包含了超过7年的网络爬虫数据集,拥有PB级规模,常用于学习词嵌入。

推荐度:★★,推荐应用方向:文本挖掘、自然语言理解

介绍和下载地址:http://commoncrawl.org/the-data/

20 Newsgroups

该数据集包含大约20000个新闻组文档,在20个不同的新闻组中平均分配,是一个文本分类的经典数据集,它是机器学习技术的文本应用中的实验的流行数据集,如文本分类和文本聚类。

推荐度:★★,推荐应用方向:文本挖掘

介绍和下载地址:http://qwone.com/~jason/20Newsgroups/


====================【好书推荐,我为自己代言】====================

《电商流量数据化运营》出版了!

  • 10余年业务经验总结:将我在甲方和乙方,跨企业和跨行业的经验总结起来,供大家快速提升,少走弯路。
  • 流量运营教科书:内容围绕流量数据化运营的全流程展开,涵盖渠道策略与计划管理、媒体投放与执行管理、渠道投放效果评估与分析、流量运营监控与效果复盘等各个环节。
  • 有用、实用:不讲数据分析理论,不讲数据分析工具使用,所有方法均可在工作中直接使用,而且围绕流量数据化运营的常见问题展开。
  • 易用、易读:不要求会Python,会用Excel就行,无晦涩难懂的理论和复杂的推导过程。
  • 以场景应用为核心:以业务场景为切入点,内容上围绕业务问题、数据支持方案、实用工具实操的思路,用数据解决每个具体业务问题。
如果你对本书感兴趣,请点击这里查看更多信息!当然,你也可以先加我微信了解一下。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注