3.10 离散化,对运营数据做逻辑分层

说明:本文是《Python数据分析与数据化运营》中的“3.10 离散化,对运营数据做逻辑分层”。

—————————–下面是正文内容————————–

所谓离散化,就是把无限空间中有限的个体映射到有限的空间中。数据离散化操作大多是针对连续数据进行的,处理之后的数据值域分布将从连续属性变为离散属性,这种属性一般包含2个或2个以上的值域。离散化处理的必要性: 继续阅读

3.3 大数据时代,数据化运营还需要降维吗

说明:本文是《Python数据分析与数据化运营》中的“3.3 大数据时代,数据化运营还需要降维吗”。

—————————–下面是正文内容————————–

数据降维就是降低数据的维度数量,数据降维是维数归约的一个重要课题。 继续阅读

3.2 将分类数据和顺序数据转换为标志变量

说明:本文是《Python数据分析与数据化运营》中的“3.2 将分类数据和顺序数据转换为标志变量”。

—————————–下面是正文内容————————–

分类数据和顺序数据是常见的数据类型,这些值主要集中在围绕数据实体的属性和描述的相关字段和变量中。 继续阅读

1.2 数据化运营所需的Python相关工具和组件

说明:本文是《Python数据分析与数据化运营》中的“1.2 数据化运营所需的Python相关工具和组件”。

本书将以Python为主要数据工作工具,本节将重点介绍Python相关工具,包括Python程序、IDE、Python第三方库、数据库和客户端、SSH远程客户端、OCR工具和机器学习框架等。 继续阅读

《Python数据分析与数据化运营》第一版常见问题

在这边文章中,我会把读者反馈给我的常见问题总结出来,供更多读者参考。里面会涉及到各种疑问或混淆知识点,希望能给大家解惑。如果大家有什么疑问,可以直接在这里留言,我会将一些跟本书相关的知识性问题总结出来并在此回答。

最近更新时间:2019-04-04
继续阅读