3.8 有关相关性分析的混沌

说明:本文是《Python数据分析与数据化运营》中的“3.8 有关相关性分析的混沌”。

-----------------------------下面是正文内容--------------------------

相关性分析是指对多个具备相关关系的变量进行分析,从而衡量变量间的相关程度或密切程度。相关性可以应用到所有数据的分析过程中,任何事物之间都是存在一定的联系。相关性用R(相关系数)表示,R的取值范围是[-1,1]。 继续阅读3.8 有关相关性分析的混沌

3.6 数据化运营要抽样还是全量数据

说明:本文是《Python数据分析与数据化运营》中的“3.6 数据化运营要抽样还是全量数据”。

-----------------------------下面是正文内容--------------------------

抽样是从整体样本中通过一定的方法选择一部分样本,抽样是数据处理的基本步骤之一,也是科学实验、质量检验、社会调查普遍采用的一种经济有效的工作和研究方法。 继续阅读3.6 数据化运营要抽样还是全量数据

3.2 将分类数据和顺序数据转换为标志变量

说明:本文是《Python数据分析与数据化运营》中的“3.2 将分类数据和顺序数据转换为标志变量”。

-----------------------------下面是正文内容--------------------------

分类数据和顺序数据是常见的数据类型,这些值主要集中在围绕数据实体的属性和描述的相关字段和变量中。 继续阅读3.2 将分类数据和顺序数据转换为标志变量

1.2 数据化运营所需的Python相关工具和组件

说明:本文是《Python数据分析与数据化运营》中的“1.2 数据化运营所需的Python相关工具和组件”。

本书将以Python为主要数据工作工具,本节将重点介绍Python相关工具,包括Python程序、IDE、Python第三方库、数据库和客户端、SSH远程客户端、OCR工具和机器学习框架等。 继续阅读1.2 数据化运营所需的Python相关工具和组件