谱聚类Spectral clustering(SC)

在之前的文章里,介绍了比较传统的K-Means聚类Affinity Propagation(AP)聚类、比K-Means更快的Mini Batch K-Means聚类以及混合高斯模型Gaussian Mixture Model(GMM)等聚类算法,今天介绍一个比较近代的一类算法——Spectral Clustering 中文通常称为“谱聚类”。

Spectral Clustering(谱聚类,有时也简称SC),其实是一类算法的统称。它是一种基于图论的聚类方法(这点上跟AP类似,而K-Means是基于点与点的距离计算),它能够识别任意形状的样本空间且收敛于全局最有解,其基本思想是利用样本数据的相似矩阵进行特征分解后得到的特征向量进行聚类。

继续阅读谱聚类Spectral clustering(SC)

混合高斯模型Gaussian Mixture Model(GMM)

混合高斯模型(Gaussian Mixture Model,简称GMM)是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。通俗点讲,无论观测数据集如何分布以及呈现何种规律,都可以通过多个单一高斯模型的混合进行拟合。

继续阅读混合高斯模型Gaussian Mixture Model(GMM)