线性判别分析Linear Discriminant Analysis (LDA)

判别分析(Discriminant Analysis)是一种分类方法,它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类。线性判别式分析(Linear Discriminant Analysis,简称为LDA)是其中一种,也是模式识别的经典算法,在1996年由Belhumeur引入模式识别和人工智能领域。LDA以Bayes判别思想为基础,当分类只有两种且总体服从多元正态分布条件下,Bayes判别与Fisher判别、距离判别是等价的。

基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。

继续阅读线性判别分析Linear Discriminant Analysis (LDA)