3.11 数据处理应该考虑哪些运营业务因素

说明:本文是《Python数据分析与数据化运营》中的“3.11 数据处理应该考虑哪些运营业务因素”。

—————————–下面是正文内容————————–

数据处理工作不仅依赖于数据工作者的数据经验,也需要考虑实际的运营业务因素。这种兼顾两种工作逻辑的工作方式会帮助数据工作少走弯路并降低数据项目失败的可能性,还有利于提高数据工作的效率和产出效果,真正让运营理解数据、应用数据并驱动业务。 继续阅读

《Python数据分析与数据化运营》前言

为什么要写这本书

随着商业环境的日益严峻,企业需要不断寻找提高利润率、降低成本、提高产出价值的有效方法,而数据化运营恰好是满足企业这一需求的关键武器。数据化运营包含了运营和数据两种要素,前者需要较多的业务经验,而后者则对数据分析提出了更高要求。只有把二者结合起来,在有足够技能、经验和技术的支持下,数据化运营才能在企业内部真正落地、生根、发芽。 继续阅读

《Python数据分析与数据化运营》第一版常见问题

在这边文章中,我会把读者反馈给我的常见问题总结出来,供更多读者参考。里面会涉及到各种疑问或混淆知识点,希望能给大家解惑。如果大家有什么疑问,可以直接在这里留言,我会将一些跟本书相关的知识性问题总结出来并在此回答。

最近更新时间:2019-04-04
继续阅读

《Python数据分析与数据化运营》第一版勘误

由于本书的作者水平有限并受限于有限的撰稿时间,以及整个出版环节众多可能会出现信息不对称,书中难免会出现一些错误或者不准确的地方,在此陈列出来供读者参考。这些已经发现的“错误”,会在下一次重印或再版时修正,有关修正的部分,会额外做标记,请读者朋友留意。

特别提示:由于第一版采用的仍然是Python2代码,因此在Python2下能正常工作,但是Python3下会出现的问题,不在此看勘误列表内。

最近更新时间:2019-04-22 继续阅读