Python数据工具箱—数据计算和统计分析库

数据计算和统计分析主要用于数据探查、计算和初步数据分析等工作。

/函数 描述 推荐度
numpy [第三方库]NumPy是Python科学计算的基础工具包,很多Python数据计算工作库都依赖它 ★★★
scipy [第三方库]Scipy是一组专门解决科学和工程计算不同场景的主题工具包 ★★★
pandas [第三方库]Pandas是一个用于Python数据分析的库,它的主要作用是进行数据分析。Pandas提供用于进行结构化数据分析的二维的表格型数据结构DataFrame,类似于R中的数据框,能提供类似于数据库中的切片、切块、聚合、选择子集等精细化操作,为数据分析提供了便捷 ★★★
statsmodels [第三方库]Statsmodels是Python的统计建模和计量经济学工具包,包括一些描述性统计、统计模型估计和统计测试,集成了多种线性回归模型、广义线性回归模型、离散数据分布模型、时间序列分析模型、非参数估计、生存分析、主成分分析、核密度估计以及广泛的统计测试和绘图等功能 ★★★
abs(x) [Python内置函数]返回x的绝对值 ★★★
cmp(x, y) [Python内置函数]比较两个对象x和y,并根据结果返回一个整数。 如果x <y,则返回值为负数,如果x == y则为零,如果x> y则返回值为正 ★★
float(x) [Python内置函数]返回从数字或字符串x构造的浮点数 ★★★
pow(x, y[, z]) [Python内置函数]返回x的y次幂。如果z存在,则返回x的y次幂,模z ★★★
sum(iterable[, start]) [Python内置函数]从左到右依次迭代,返回总和 ★★★
math [Python标准库]数学函数库,包括正弦、余弦、正切、余切、弧度转换、对数运算、圆周率、绝对值、取整等数学计算方法 ★★★
cmath [Python标准库]与math基本一致,区别是cmath运算的是复数 ★★
decimal [Python标准库]10进制浮点运算 ★★
fractions [Python标准库]分数模块提供对有理数算术的支持 ★★

====================【好书推荐,我为自己代言】====================

《Python数据分析与数据化运营》第二版上市啦!

50+数据流工作知识点
14个数据分析与挖掘主题
8个综合性运营分析案例
涵盖会员、商品、流量、内容4大主题
360°把脉运营问题并贴合数据场景落地


本书主要基于Python实现,其中主要用到的计算库是numpy、pandas和sklearn,其他相关库还包括:
  • 标准库:re、time、datetime、json、 base64、os、sys、cPickle、tarfile
  • Python调用R的rpy2
  • 统计分析:Statsmodels
  • 中文处理:结巴分词
  • 文本挖掘:Gensim
  • 数据挖掘和算法:XGboost、gplearn、TPOT
  • 爬虫和解析:requests、Beautiful Soup、xml
  • 图像处理:OpenCV和PIL/Pollow
  • 数据读取:xlrd、pymongo、pymysql
  • 数据预处理:imblearn
  • 展示美化类:Matplotlib、pyecharts、graphviz、prettytable、wordcloud、mpl_toolkits、pydotplus
如果你对以下内容感兴趣,那么本书将值得一看:
  • KMeans聚类的自动K均值的确立方法
  • 基于软方法的多分类模型组合评估模型的应用
  • 基于自动下探(下钻、细分)的应用
  • 基于增量学习的多项式贝叶斯分类
  • pipeline管道技术的应用
  • 基于超参数的自动参数值的优化方法
  • 特征自动选择
  • 文本分类、文本主题挖掘
  • 基于自动时间序列ARIMA的P、D、Q的调整
  • python决策树规则输出
  • 基于自定义图像的文本标签云
  • 非结构化数据,例如图像、音频、文本等处理
  • 对象持久化处理
  • 如何使用Python调用R实现数据挖掘
  • 自动化学习:增加了对于自动化数据挖掘与机器学习的理论、流程、知识和应用库介绍,并基于TPOT做自动化回归和分类学习案例演示
有关这本书的写作感受、详细内容介绍、附件(含数据和代)下载、关键知识和方法以及完整书稿目录,请访问《Python数据分析与数据化运营》第二版出版了!要购买此书,可以去京东当当天猫等查看。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

您可以使用这些HTML标签和属性: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>