Python数据分析与数据化运营——领券速来!

机械工业出版社25周年促销活动,可领券买《Python数据分析与数据化运营》书。有想入手的同学抓紧吧。


====================【好书推荐,我为自己代言】====================

《Python数据分析与数据化运营》第二版上市啦!

50+数据流工作知识点
14个数据分析与挖掘主题
8个综合性运营分析案例
涵盖会员、商品、流量、内容4大主题
360°把脉运营问题并贴合数据场景落地


本书主要基于Python实现,其中主要用到的计算库是numpy、pandas和sklearn,其他相关库还包括:
  • 标准库:re、time、datetime、json、 base64、os、sys、cPickle、tarfile
  • Python调用R的rpy2
  • 统计分析:Statsmodels
  • 中文处理:结巴分词
  • 文本挖掘:Gensim
  • 数据挖掘和算法:XGboost、gplearn、TPOT
  • 爬虫和解析:requests、Beautiful Soup、xml
  • 图像处理:OpenCV和PIL/Pollow
  • 数据读取:xlrd、pymongo、pymysql
  • 数据预处理:imblearn
  • 展示美化类:Matplotlib、pyecharts、graphviz、prettytable、wordcloud、mpl_toolkits、pydotplus
如果你对以下内容感兴趣,那么本书将值得一看:
  • KMeans聚类的自动K均值的确立方法
  • 基于软方法的多分类模型组合评估模型的应用
  • 基于自动下探(下钻、细分)的应用
  • 基于增量学习的多项式贝叶斯分类
  • pipeline管道技术的应用
  • 基于超参数的自动参数值的优化方法
  • 特征自动选择
  • 文本分类、文本主题挖掘
  • 基于自动时间序列ARIMA的P、D、Q的调整
  • python决策树规则输出
  • 基于自定义图像的文本标签云
  • 非结构化数据,例如图像、音频、文本等处理
  • 对象持久化处理
  • 如何使用Python调用R实现数据挖掘
  • 自动化学习:增加了对于自动化数据挖掘与机器学习的理论、流程、知识和应用库介绍,并基于TPOT做自动化回归和分类学习案例演示
有关这本书的写作感受、详细内容介绍、附件(含数据和代)下载、关键知识和方法以及完整书稿目录,请访问《Python数据分析与数据化运营》第二版出版了!要购买此书,可以去京东当当天猫等查看。

发表评论

电子邮件地址不会被公开。 必填项已用*标注