案例-基于自动K值的KMeans广告效果聚类分析

案例背景

某企业由于投放的广告渠道比较多,需要对其做广告效果分析以实现有针对性的广告效果测量和优化工作。跟以应用为目的的案例不同的是,由于本案例是一个分析型案例,该过程的输出其实是不固定的,因此需要跟业务运营方具体沟通需求。

以下是在开展研究之前的基本预设条件:

  • 广告渠道的范畴是什么?具体包括哪些渠道?——所有站外标记的广告类渠道(以ad_开头)。
  • 数据集时间选择哪个时间段?——最近90天的数据。
  • 数据集选择哪些维度和指标?——渠道代号、日均UV、平均注册率、平均搜索量、访问深度、平均停留时间、订单转化率、投放总时间、素材类型、广告类型、合作方式、广告尺寸、广告卖点。
  • 专题分析要解决什么问题?——将广告分类并找出其重点特征,为接下来的业务讨论和数据分析提供支持。

明确了上述具体需求后,下面开始案例的主要工作部分。本节案例的输入源数据ad_performance.txt和源代码chapter7_code2.py位于“附件-chapter7”中,默认工作目录为“附件-chapter7”(如果不是,请cd切换到该目录下,否则会报“IOError: File ad_performance.txt does not exist”)。程序的输出为不同聚类类别的详细信息数据以及雷达图。 继续阅读案例-基于自动K值的KMeans广告效果聚类分析